Performance Testing Tag

Performance Engineering in QA

Performance engineering is a cultural shift in the way organizations view their essential processes. Performance engineering embraces practices and capabilities that build quality and performance throughout an organization." - Joe Colantonio Performance Engineering is a practice that has emerged as a vital discipline within Quality Assurance (QA) to address performance-related challenges throughout the software development lifecycle. By proactively focusing on performance aspects, organizations can deliver high-performing applications that meet user expectations. Q-Pros has proven excellence in quality assurance and software testing using high-quality software and tools. This article explores the significance of performance engineering in QA and highlights its benefits and key practices. Performance engineering represents a proactive and continuous approach to application performance testing and monitoring. It fosters collaboration among various teams, tools, and processes by establishing continuous feedback loops. Unlike traditional performance testing, which solely relies on testers for quality assurance, performance engineering involves developers, performance engineers, product owners, and business analysts in ensuring the overall performance and quality of the application. It encompasses a cultural shift in organizations, emphasizing practices and capabilities that promote performance and quality throughout the development process. Benefits of Performance Engineering Performance engineering provides numerous benefits to organizations and their applications. By optimizing performance, it improves application responsiveness, enhancing the user experience and fostering customer satisfaction. It also enables scalability, allowing applications to handle increased loads and adapt to evolving business requirements. Through cost optimization, it ensures efficient resource utilization and infrastructure scaling. By proactively detecting and addressing performance issues early in the development process, it reduces future expenses and efforts. Furthermore, performance engineering enhances application stability, making them reliable under varying conditions, and facilitates data-driven decision-making through performance metrics analysis. Overall, performance engineering is vital for achieving high-performance, user-friendly, scalable, cost-effective, and stable applications. Practices and Techniques in Performance Engineering 1. Identifying tier-based engineering transactions: Dividing the application's load scripts into transactions that represent specific tiers of the deployment helps isolate and focus on the specific tier causing degradation. 2. Monitoring key performance indicators (KPIs): Monitoring front-end and resource-related KPIs to understand the current capacity and workload trends. Examples of KPIs include TCP connection rate, requests per second, enqueue/dequeue count, queries per second, CPU average idle, waiting requests, free worker threads, enqueue/dequeue wait time, and free connections in the thread pool. 3. Reducing the number of transactions for analysis: Analyzing a large number of transactions can be overwhelming. Choosing a subset of transactions based on the characteristics of the application, including the landing page, log-in, business transactions with the highest and lowest response times, and engineering transactions. 4. Waiting for the test to be completed before analyzing: Avoid analyzing test results while the test is still running. Instead, let the test complete before interpreting the results and trends. 5. Ensuring reproducible results: Running each test scenario three times without making any changes to the performance test harness. This helps identify and remove any irreproducible results and ensures consistent and reliable test outcomes. 6. Ramping up the load: Starting with ghost tests to check system behavior without user activity. Then, single-user load tests to establish a baseline and identify transactions with the highest and lowest response times. Finally, concurrent user load scenarios to capture KPI metrics at different load levels. 7. Using visualization to spot anomalies: Comparing the expected behavior of a scalable application, as depicted in architectural diagrams, with the actual test results. Looking for discrepancies and anomalies to identify potential bottlenecks. 8. Looking for KPI trends and plateaus: Analyzing the trends of KPI values and focusing on the first occurring plateau in monitored hit rate KPIs. This plateau indicates a limitation in throughput and can help identify the server with the limitation. Graphing the free resources of that server to understand the root cause of the bottleneck. Performance Requirements Elicitation: Identifying clear and measurable performance requirements is crucial. Performance engineering collaborates with stakeholders to define response time, throughput, and resource utilization targets based on business needs. 9. Performance Monitoring and Alerting: Continuous performance monitoring in production environments helps identify performance degradations, abnormal behavior, and bottlenecks. Real-time monitoring tools provide insights into system health, enabling proactive measures to maintain optimal performance. Performance engineering is a vital discipline within QA that promotes a proactive and continuous focus on application performance. By involving stakeholders and implementing key practices, organizations can deliver high-performing applications that meet user expectations. Performance engineering brings collaboration, cultural shifts, and practices that enhance performance and quality. It offers benefits such as improved user experience, scalability, cost optimization, early issue detection, stability, and data-driven decision-making. Through practices like identifying transactions, monitoring KPIs, reducing analysis complexity, ensuring reproducible results, ramping up load testing, using visualization, and analyzing KPI trends, organizations can optimize performance and achieve their goals. With clear requirements and continuous monitoring, organizations can proactively address performance issues and ensure successful applications. Q-Pros is a leading test services provider, we offer software testing as one of our main services, as we understand its importance in today’s competitive market. If you would like to know more about us and our services, check out our list of offers. Find out more about us and request a testing service through our https://q-pros.com/online-test-request/...

Read More
Shift-Right Testing Advantages and Types for Improved Software Quality

In the fast-evolving world of software development, where agility and user satisfaction are paramount, a new approach called Shift-Right Testing has emerged in software quality assurance, Similar to the Shift-Left testing approach, which was introduced earlier, Shift Right Testing advocates for testing in production or close-to-production environments, enabling organizations to identify issues in real-world scenarios. This article explores the concept of shit-right testing, its different types and approaches, and how it has the potential to transform the way software testing is approached, ultimately delivering faster time-to-market and improved overall software quality. Using high-quality software and tools, Q-Pros has proven excellence in defect prevention and software testing. In this article, we will explore the concept of Shift-Left Testing, an introduction to its different types, and the advantages this testing approach offers its users. Types of Shift-Right Testing When it comes to Shift Right Testing, there are several different types of approaches that organizations can adopt. These types of Shift Right Testing include: Production Monitoring: this type of Shift Right Testing involves closely monitoring the production environment to identify any issues or anomalies that may arise. By leveraging various monitoring tools and techniques, organizations can gain insights into the system's behavior, performance, and user interactions, allowing them to detect and address potential problems in real time. Canary Releases: In this approach, a small percentage of the user base is exposed to new features or updates before a full release. By gradually rolling out changes to a subset of users, organizations can gather valuable feedback, monitor the impact on performance, and identify any issues or bugs early on. This helps in mitigating risks and ensuring a smoother rollout to the wider user base. A/B Testing: A/B testing, also known as split testing: this type involves comparing two or more versions of a software feature or user interface to determine which performs better. By randomly dividing users into different groups and presenting each group with a different version, organizations can measure user preferences, engagement, and conversion rates. A/B testing in production allows organizations to make data-driven decisions and iterate on their software based on real user feedback. Chaos Engineering: this type of Shift Right Testing involves intentionally injecting failures or disruptions into the system to identify weaknesses and build resilience. By simulating real-world scenarios and stress-testing the system, organizations can proactively identify and address potential vulnerabilities or bottlenecks, ensuring the system can withstand unexpected events and recover gracefully. User Feedback and Telemetry: user feedback and telemetry data collection are essential components of Shift Right Testing. By actively soliciting feedback from users, such as through feedback forms or user surveys, organizations can gather valuable insights into user experiences, identify pain points, and prioritize areas for improvement. Additionally, telemetry data, which includes logs, performance metrics, and usage patterns, provides organizations with a wealth of information to analyze and optimize their software continuously. Benefits of Shift-Right Testing Shift-right testing and shift-left testing are two approaches that aim to enhance the software testing process. While shift-right testing focuses on involving testers earlier and more frequently in the SDLC, shift-left testing emphasizes the early involvement of testers in the requirements and design phases. Here are some benefits of shift-right testing compared to shift-left testing: Early user feedback: Shift-right testing allows for early user feedback by involving testers throughout the development process. Testers can provide valuable insights and suggestions based on their understanding of user needs and expectations. This helps in refining the software requirements and design, leading to a product that better meets user requirements. Agility and adaptability: Shift-right testing aligns with agile and iterative development methodologies. Involving testers throughout the SDLC, enables quick iterations, adjustments, and enhancements based on feedback. This agility and adaptability are particularly beneficial in dynamic development environments where requirements evolve rapidly. Comprehensive test coverage: Shift-right testing complements shift-left testing by providing additional test coverage. While shift-left testing focuses on early validation of requirements and design, shift-right testing expands the testing scope to cover functional, non-functional, and user-centric aspects of the software. This results in more comprehensive testing and a higher level of quality assurance. Improved defect detection: By involving testers earlier in the development process, shift-right testing enhances defect detection. Testers can identify bugs and issues that may have been missed during the design or coding stages. This early detection allows for timely resolution and prevents the accumulation of critical defects. Collaborative approach: Shift-right testing fosters collaboration between testers, developers, and other stakeholders. By working closely together throughout the SDLC, teams can address issues, share knowledge, and align their efforts toward delivering high-quality software. This collaborative approach promotes better communication and teamwork. Test automation leverage: Shift-right testing encourages the use of test automation tools and frameworks. Testers can automate repetitive and time-consuming test cases, enabling faster execution and freeing up time for more exploratory and user-centric testing. This automation leverage improves efficiency and productivity in the testing process. Both shift-left and shift-right testing approaches have their own unique benefits, and their effectiveness may vary depending on the specific project and context. Employing a combination of these approaches, commonly referred to as "shift-left-right testing," can provide the advantages of both methodologies and help achieve comprehensive testing and quality assurance. Q-Pros is a leading test services provider, we offer software testing as one of our main services, as we understand its importance in today’s competitive market. If you would like to know more about us and our services, check out our list of offers. Find out more about us and request a testing service through our https://q-pros.com/online-test-request/...

Read More
AI-Based Defect Prediction and Prevention

In the rapidly evolving world of software development, the adoption of high-qualitysoftware is essential for success. Defects and bugs can lead to dissatisfiedcustomers, increased maintenance costs, and even security vulnerabilities.Traditional quality assurance (QA) approaches heavily rely on manual testing and bug fixing, which can be time-consuming and prone to errors. However, with the emergence of AI technologies, a new era of defect prediction and prevention has begun. AI-based defect prediction and prevention leverage advanced algorithms to proactively identify potentialsoftware defects, enabling organizations to save time, reduce costs, and deliver higher-quality software. In this article, we will delve into the transformative power of AI in defect prediction and prevention and its significant impact on software quality assurance. Using high-quality software and tools,Q-Pros has proven excellence in defect prediction and prevention. In this article, we will explore the challenges of defect detection, how AI is harnessed for defect prevention, and the way it functions in doing so, in addition to the benefits of this practice. The Challenge of Defect DetectionTraditional QA approaches primarily focus on identifying and rectifying defects after they occur, often during the testing phase. However, this reactive approach can prove inefficient and result in defects escaping into production. Moreover, manual detection of defects is time-consuming and prone to human error. This is where AI-based defect prediction and prevention come into play, offering a proactive and intelligent solution to mitigate software defects. Harnessing AI for Defect PredictionAI algorithms, such as machine learning and data mining, possess the capability to analyze extensive data sets and identify patterns that might indicate potential defects. By training on historical data, these algorithms can learn from past defects, their characteristics, and associated factors. Consequently, they can predict the likelihood of future defects based on various code attributes, complexity metrics, development practices, and other relevant factors. This enables the early identification of high-risk areas, allowing developers and testers to efficiently allocate resources and focus on critical code sections. Preventing Defects with AI-Based Defect PredictionAI-based defect prediction is only one aspect of the equation. AI can also play a pivotal role in preventing defects from arising in the first place. By analyzing code repositories, bug-tracking systems, and other software artifacts, AI algorithms can identify common coding mistakes, anti-patterns, and design flaws that often lead to defects. Developers can then receive automated recommendations, coding guidelines, and best practices to adhere to, reducing the chances of introducing defects during the development process. By providing proactive guidance, AI empowers developers to make informed decisions, enhancing code quality and preventing potential defects before they materialize. Benefits of AI-Based Defect Prediction and PreventionThe adoption of AI-based defect prediction and prevention offers numerous compelling benefits for organizations striving to enhance their software quality assurance practices: 1. Early Defect Detection: by harnessing AI algorithms, defects can be identified early in the development lifecycle, reducing the cost and effort associated with rectifying them later. 2. Resource Optimization: AI-based predictions enable QA teams to focus their efforts on high-risk areas, optimizing resource allocation and improving testing efficiency. 3. Reduced Time-to-Market: proactive defect prevention facilitated by AI accelerates the software development process, enabling faster time-to-market while maintaining high quality. 4. Cost Savings: by minimizing the occurrence of defects, organizations can save costs associated with post-production bug fixing, customer support, and maintenance. 5. Improved Customer Satisfaction: high-quality software with fewer defects leads to heightened customer satisfaction and enhanced loyalty. 6. Continuous Improvement: AI algorithms continuously learn from new data and feedback, improving their accuracy and effectiveness over time. ConclusionAI-based defect prediction and prevention are revolutionizing the field of software quality assurance. By leveraging AI algorithms, organizations can proactively identify potential defects, prioritize testing efforts, and prevent defects from arising in the first place. This shift from reactive to proactive defect management saves time, reduces costs, and enhances software quality. As AI continues to evolve, its impact on defect prediction and prevention will only become more profound. Q-Pros is a leading test services provider, we offer software testing as one of our main services, as we understand its importance in today’s competitive market. If you would like to know more about us and our services, check out our list of offers. Find out more about us and request a testing service through our online request form....

Read More
Shift-Left Testing: Accelerating Quality and Efficiency in Software Development

In today's ever-growing software development, organizations prioritize delivering high-quality software rapidly. However, conventional testing practices often encounter delays and increased costs, leading to compromised software quality. To address these challenges, the concept of "Shift-Left Testing" has emerged as a prominent approach. In this article, we will explore the essence of Shift-Left Testing, its various types, and the advantages it brings to organizations aiming to enhance their software development processes. Using high-quality software and tools, Q-Pros has proven excellence in defect prevention and software testing. In this article, we will explore the concept of Shift-Left Testing, an introduction to its different types, and the advantages this testing approach offers its users. Shift-Left Testing is an approach that involves moving testing activities and responsibilities earlier in the software development lifecycle. Traditionally, testing is conducted after the development phase is complete, leading to delayed bug detection and longer feedback loops. Shift-Left Testing aims to involve testers, quality assurance (QA) teams, and relevant stakeholders from the project's inception, allowing for early detection and prevention of defects. By focusing on collaboration, continuous feedback, and test automation, Shift-Left Testing aims to accelerate development cycles and improve software quality. Types of Shift-Left Testing Traditional Shift Left Testing: traditional shift left testing moves the focus of testing from acceptance and system-level testing towards unit and integration testing. This approach concentrates on testing individual components and their interactions, utilizing tools such as API testing. By catching defects earlier in the development process, this method helps reduce costs and improve overall quality. Incremental Shift Left Testing: Incremental shift left testing is commonly used in projects that follow a more iterative and incremental development approach. It involves breaking down the development cycle into smaller increments, with corresponding shorter durations. Testing activities from the larger waterfall V-model are shifted left to become increments in the smaller incremental V-models. This approach allows for continuous testing throughout the development process, including both developmental and operational testing. Agile/DevOps Shift Left Testing: Agile/DevOps shift left testing aligns with Agile and DevOps methodologies, emphasize frequent iterations and continuous delivery. Testing activities are organized into numerous short-duration sprints. The shift left occurs because the types of testing in the early sprints are positioned to the left of the corresponding types of testing in the larger V-models. This approach enables continuous testing throughout the development process, promoting early defect detection and faster feedback. Model-Based Shift Left Testing: Model-based shift left testing focuses on testing executable requirements, architecture, and design models. Instead of waiting for the software to be developed, testing begins almost immediately by validating these models. This approach allows for the early detection of defects in the requirements, architecture, and design stages, reducing the risk of implementing flawed software. As executable models and simulation/testing tools become more prevalent, model-based shift left testing is gaining popularity. Each of these shift-left testing methods offer advantages in terms of early defect detection and cost savings. They represent a progression, with each method building upon the previous one to improve the efficiency and effectiveness of testing. Benefits of Shift-Left Testing Early Bug Detection and Prevention: One of the key benefits of Shift-Left Testing is the early detection and prevention of defects. By involving testers and QA teams in the requirements gathering and design phases, potential issues can be identified and addressed early on. This reduces the chances of critical bugs making their way into the later stages of development, resulting in higher software quality. Improved Collaboration and Communication: Shift-Left Testing fosters collaboration between developers, testers, and stakeholders throughout the software development life cycle. Testers actively participate in discussions, provide valuable inputs, and work closely with developers to ensure quality standards are met. This improved collaboration leads to better communication, shared understanding, and a collaborative mindset that enhances the overall efficiency of the development process. Faster Feedback and Iterative Improvement: With shift-left Testing, feedback loops become shorter and more frequent. Testers can provide early feedback on requirements, designs, and prototypes, enabling developers to make necessary adjustments promptly. This iterative approach allows for continuous improvement, reduces rework, and ensures that the final product meets the desired quality standards. Increased Test Coverage and Efficiency: Shift-Left Testing emphasizes the early creation of test assets, including test cases, test scripts, and test data. By starting testing activities earlier, testers have more time to create comprehensive test suites that cover various aspects of the application. Test automation plays a crucial role in achieving increased test coverage and efficiency by automating repetitive tasks and enabling faster test execution. Cost and Time Savings: by catching defects early in the software development life cycle, Shift-Left Testing helps organizations save costs associated with fixing issues in later stages. Early defect detection reduces the time and effort required for bug fixing, resulting in shorter development cycles and faster time-to-market. Additionally, the increased efficiency and collaboration among team members contribute to overall cost savings. Continuous Quality Improvement: Shift-Left Testing promotes a culture of continuous improvement. Testers and QA teams continuously learn from their experiences, gather feedback, and refine their testing strategies. By incorporating lessons learned into subsequent iterations, organizations can continuously enhance their testing practices and deliver higher-quality software with each release. Shift-Left Testing is a powerful approach that transforms the way software development teams approach testing and quality assurance. By involving testers early in the software development life cycle, organizations can proactively address defects, improve collaboration, and optimize the overall development process. The benefits of Shift-Left Testing, including early bug detection, improved communication, faster feedback, and continuous improvement make it an essential practice for organizations aiming to accelerate development cycles and deliver high-quality software in today's fast-paced. Q-Pros is a leading test services provider, we offer software testing as one of our main services, as we understand its importance in today’s competitive market. If you would like to know more about us and our services, check out our list of offers. Find out more about us and request a testing service through our https://q-pros.com/online-test-request/...

Read More
Quality Professionals-Visual Testing

In this article, we will learn about a type of software testing known as Visual Testing. We will investigate the various subjects surrounding this testing approach and how we at Q-Pros adopt its various methods to guarantee excellent results. What is Visual testing?"Visual Testing" is observing an application’s visible output while monitoring for visual bugs and assessing the output in comparison to what is expected by demand. Examining an application's interface is done during the production period by developers, and later end-to-end users (a person who intend to use a product) will seal the deal with the product in the final stages. The front-end developer’s main concern is to make sure that an application looks good on all browsers and devices with no obvious defects in terms of appearance. HTML and CSS as well as JS are interchangeable and can behave differently from one platform to another. This causes the risk of errors that not only affect appearance but also the functionality. Considering such concerns, Visual testing is highly demanded by clients as a major step in QA (Quality Assurance).The distinct value of Visual TestingTesting your application's script and making sure each input delivers an expected output on a basic level is not enough. Changes regarding layout and interface could occur due to a lack of compatibility. Certain elements such as height, width, background color, font style, font size, and position within screen coordinates could change from one platform to another. This change is a result of different operating systems using various rendering methods.Developers need to have their code written in a way that includes all previous versions of script input. Tools such as Babel could ease up the process by re-writing a code to make sure it could be rendered by all browsers in the same way. Cross-browser testing is a different approach with similar objectives. It includes other aspects than visual ones and focuses on how an application behaves in various browsers, making sure an application is operating based on business requirements and has achieved the desired quality level on all available browsers.Manual Visual Testing Vs Automatic Visual Testing Manual Visual Testing Manual Visual Testing involves testing an application by sheer observation through usage and excavating any notes or anomalies that might stick out. This form of testing is becoming less popular because it is time-consuming. To put it in perspective, testing an application "manually" will require testing it on all available browsers, in all operating systems, and taking into consideration, available devices and different screen configurations and screen displays. This will take a lot of time to accomplish, and it will open room for false readings. Automated Visual Testing In Automated Visual Testing, developers use tools and software to automate the test process and compare visual elements across different screen combinations. Automated tools such as Selenium or Appium ease the process by running the script and creating UI variations. As good as it may seem to have all screen combinations generated automatically, it still leaves the burden of testing it yourself to check for any bugs or defects. One way to make things even easier is to rely on a method called Snapshot Testing.In short, Snapshot testing creates a bitmap of multiple screen combinations and compares pixels, reporting/highlighting any unexpected changes in color hex code. By comparing each pair of pixels in combination A & combination B, a snapshot test highlighted the difference as shown in the third table. The Issue with Automated Visual Testing and The Snapshot Method: As good as it may seem, Automated Visual testing is not perfect. While companies are relying on automated means of visual testing, the need for manual observation is essential.Rendering will always cause deference – Relying on an algorithm to detect differences is almost redundant, as the algorithm will always report bugs. This is because pixels do not represent visual elements. Certain rendering activities include algorithms that create pixel differences to run a script. Encountering some differences on a UI level does not always translate to bugs – some operating systems/browsers adjust CSS codes in a way that is seen as suitable. For Example, Minor changes may occur to the text based on the browser being used. /*! elementor - v3.20.0 - 26-03-2024 */.elementor-heading-title{padding:0;margin:0;line-height:1}.elementor-widget-heading .elementor-heading-title[class*=elementor-size-]>a{color:inherit;font-size:inherit;line-height:inherit}.elementor-widget-heading .elementor-heading-title.elementor-size-small{font-size:15px}.elementor-widget-heading .elementor-heading-title.elementor-size-medium{font-size:19px}.elementor-widget-heading .elementor-heading-title.elementor-size-large{font-size:29px}.elementor-widget-heading .elementor-heading-title.elementor-size-xl{font-size:39px}.elementor-widget-heading .elementor-heading-title.elementor-size-xxl{font-size:59px}Benefits of Visual Testing Visual Testing offers a multitude of advantages: Improved User Experience: By identifying visual inconsistencies and UI defects, Visual Testing ensures a polished and user-friendly experience for everyone.Early Defect Detection: Visual bugs can be caught early in the development cycle, leading to faster and more cost-effective fixes.Reduced Maintenance Costs: Consistent visual appearance across platforms minimizes the need for rework and maintenance efforts later in the development process.Faster Release Cycles: Automated Visual Testing can be integrated into CI/CD pipelines, enabling faster release cycles with the confidence of a visually sound product.Peace of Mind: Visual Testing provides developers and stakeholders with the assurance that the software's visual presentation aligns with design expectations. The Future of Visual Testing Visual Testing is poised for further evolution: Machine Learning Integration: Machine learning algorithms can be employed to analyze visual data and automatically identify potential UI issues.Self-Healing UIs: Imagine UIs that can self-adjust for optimal display across different devices. Visual Testing combined with AI could pave the way for such advancements.Focus on Accessibility: Visual Testing will likely play a bigger role in ensuring UIs are accessible to users with visual impairments.Q-ProsVisual testing is a field that co-exists with a lot of other non-functional testing methods; it is an inseparable need of QA. At Q-Pros We run scripts on various scenarios to make sure the script runs well on all available platform combinations. We rely on automated tools as well as manually checking visual elements via a team of QA experts....

Read More