mobile app performance testing Tag

cloud computing

The pace of change in today's world is unprecedented, and the emergence of digital technologies has profoundly impacted both our work and personal lives. Digital transformation has become a prominent topic of discussion as organizations undergo significant shifts in response to these advancements. Technologies such as the Internet of Things (IoT), big data, social media, cloud computing, blockchain, and augmented reality are propelling organizations towards a new level of digital customer engagement and IT-enabled business operations and services. Among these technologies, cloud computing plays a fundamental role as a key component of the digital transformation technology ecosystem. Cloud computing is not only a key pillar of the digital transformation technology ecosystem but also has a significant impact on Quality Assurance (QA) practices. It has become an integral part of QA strategies and has compelled organizations to adapt their testing methodologies to align with cloud-based environments. By leveraging cloud computing in QA, organizations gain a range of advantages, including cost efficiency, scalability, and streamlined test environment management. The cloud enables QA teams to provision and de-provision testing resources on-demand, ensuring optimal resource utilization and reducing infrastructure costs. Moreover, cloud-based testing environments provide flexibility, allowing QA professionals to create and manage multiple environments with ease. Q-Pros has proven excellence in quality assurance and software testing using high-quality software and tools. This article explores the significance of cloud computing in QA and highlights its benefits and key practices. Benefits of Cloud Computing By effectively embracing cloud computing in QA, organizations can enhance their testing processes, promote collaboration, and accelerate the delivery of high-quality software products. Cloud-based QA facilitates seamless collaboration among distributed teams, provides easy access to testing resources, and enables efficient test data management. It also aligns well with agile and DevOps methodologies, supporting continuous integration and delivery practices. Moreover, cloud-based QA offers several other benefits, such as: It improves testing efficiency by leveraging the scalability of the cloud. With the ability to run tests in parallel, organizations can significantly reduce testing time and accelerate their software release cycles. Cloud computing enables enhanced test coverage across a wide range of configurations, operating systems, and devices. QA teams can access diverse virtualized environments, ensuring comprehensive testing and delivering a consistent user experience across various platforms. Organizations can optimize costs through pay-as-you-go models, eliminating the need for investing in and maintaining dedicated hardware infrastructure. This cost optimization reduces capital expenditures and operational costs associated with testing activities. Cloud-based QA also promotes seamless integration and collaboration, enabling efficient information sharing and real-time collaboration between development and QA teams. Integration with other software development and collaboration tools enhances cross-functional collaboration and improves issue resolution. The scalability of cloud-based QA allows organizations to easily expand or shrink their testing environments as needed. This flexibility ensures that QA teams have the necessary resources to conduct testing effectively, even during peak periods. Cloud computing provides robust disaster recovery and business continuity capabilities. Organizations can leverage cloud-based backups and redundant infrastructure to ensure the security and protection of their testing environments and data. This enables quick recovery and minimal disruption to testing activities in the event of a disaster or system failure. Overall, by leveraging the benefits of cloud computing in QA, organizations can drive efficiency, collaboration, and quality improvements in their testing processes. It enables them to adapt to changing market needs, deliver software faster, and achieve higher customer satisfaction through robust and reliable products. Practices of Cloud Computing in QA Cloud computing brings about various practices and approaches to Quality Assurance (QA) that organizations can adopt to optimize their testing processes. Here are some key practices of cloud computing in QA: Cloud-based Test Environment Management: Cloud computing enables efficient management of test environments. QA teams can provision and configure testing environments on-demand, using virtualized resources in the cloud. This practice eliminates the need for maintaining dedicated hardware and allows for rapid deployment of test environments, enabling testers to access the required configurations easily. Scalable Testing Resources: Cloud-based QA allows organizations to scale their testing resources as needed. QA teams can leverage the scalability of the cloud to allocate additional virtual machines, storage, and networking resources for testing purposes. This scalability ensures optimal resource utilization and the ability to handle increased testing demands during peak periods. Parallel Test Execution: Cloud computing enables parallel test execution, which significantly reduces testing time. QA teams can execute multiple tests simultaneously by leveraging the scalability and resources provided by the cloud. This practice improves testing efficiency, shortens feedback cycles, and accelerates the software release process. Agile and DevOps Integration: Cloud-based QA aligns well with agile and DevOps methodologies. Organizations can integrate cloud-based testing into their continuous integration and continuous delivery (CI/CD) pipelines. By automating test execution in the cloud, organizations can achieve faster feedback, enhance collaboration between development and QA teams, and enable more frequent and reliable software releases. On-Demand Test Data Management: Cloud computing offers efficient test data management practices. Organizations can leverage cloud storage solutions to store, retrieve, and synchronize test data across different environments. This ensures consistent and reliable test data availability and enables testers to access and manage test data on-demand. Collaboration and Accessibility: Cloud-based QA promotes collaboration and accessibility among distributed teams. Testers and stakeholders can access testing environments, test cases, and test results from anywhere with an internet connection. Cloud-based QA tools and platforms facilitate real-time collaboration, improving communication, and enabling efficient teamwork across geographically dispersed teams. Disaster Recovery and Backup: Cloud computing provides robust disaster recovery and backup capabilities. Organizations can utilize cloud-based backups to ensure the availability and integrity of their testing environments and data. In the event of a disaster or system failure, the cloud enables quick recovery and minimizes the impact on testing activities. By adopting these practices of cloud computing in QA, organizations can streamline their testing processes, improve efficiency, enhance collaboration, and achieve higher quality software products. Cloud-based QA enables organizations to adapt to dynamic testing needs, scale resources efficiently, and leverage the benefits of cloud technology for successful digital transformations. Q-Pros is a leading test services provider, we offer software testing as one of our main services, as we understand its importance in today’s competitive market. If you would like to know more about us and our services, check out our list of offers. https://q-pros.com/online-test-request/...

Read More
AI-Based Defect Prediction and Prevention

In the rapidly evolving world of software development, the adoption of high-qualitysoftware is essential for success. Defects and bugs can lead to dissatisfiedcustomers, increased maintenance costs, and even security vulnerabilities.Traditional quality assurance (QA) approaches heavily rely on manual testing and bug fixing, which can be time-consuming and prone to errors. However, with the emergence of AI technologies, a new era of defect prediction and prevention has begun. AI-based defect prediction and prevention leverage advanced algorithms to proactively identify potentialsoftware defects, enabling organizations to save time, reduce costs, and deliver higher-quality software. In this article, we will delve into the transformative power of AI in defect prediction and prevention and its significant impact on software quality assurance. Using high-quality software and tools,Q-Pros has proven excellence in defect prediction and prevention. In this article, we will explore the challenges of defect detection, how AI is harnessed for defect prevention, and the way it functions in doing so, in addition to the benefits of this practice. The Challenge of Defect DetectionTraditional QA approaches primarily focus on identifying and rectifying defects after they occur, often during the testing phase. However, this reactive approach can prove inefficient and result in defects escaping into production. Moreover, manual detection of defects is time-consuming and prone to human error. This is where AI-based defect prediction and prevention come into play, offering a proactive and intelligent solution to mitigate software defects. Harnessing AI for Defect PredictionAI algorithms, such as machine learning and data mining, possess the capability to analyze extensive data sets and identify patterns that might indicate potential defects. By training on historical data, these algorithms can learn from past defects, their characteristics, and associated factors. Consequently, they can predict the likelihood of future defects based on various code attributes, complexity metrics, development practices, and other relevant factors. This enables the early identification of high-risk areas, allowing developers and testers to efficiently allocate resources and focus on critical code sections. Preventing Defects with AI-Based Defect PredictionAI-based defect prediction is only one aspect of the equation. AI can also play a pivotal role in preventing defects from arising in the first place. By analyzing code repositories, bug-tracking systems, and other software artifacts, AI algorithms can identify common coding mistakes, anti-patterns, and design flaws that often lead to defects. Developers can then receive automated recommendations, coding guidelines, and best practices to adhere to, reducing the chances of introducing defects during the development process. By providing proactive guidance, AI empowers developers to make informed decisions, enhancing code quality and preventing potential defects before they materialize. Benefits of AI-Based Defect Prediction and PreventionThe adoption of AI-based defect prediction and prevention offers numerous compelling benefits for organizations striving to enhance their software quality assurance practices: 1. Early Defect Detection: by harnessing AI algorithms, defects can be identified early in the development lifecycle, reducing the cost and effort associated with rectifying them later. 2. Resource Optimization: AI-based predictions enable QA teams to focus their efforts on high-risk areas, optimizing resource allocation and improving testing efficiency. 3. Reduced Time-to-Market: proactive defect prevention facilitated by AI accelerates the software development process, enabling faster time-to-market while maintaining high quality. 4. Cost Savings: by minimizing the occurrence of defects, organizations can save costs associated with post-production bug fixing, customer support, and maintenance. 5. Improved Customer Satisfaction: high-quality software with fewer defects leads to heightened customer satisfaction and enhanced loyalty. 6. Continuous Improvement: AI algorithms continuously learn from new data and feedback, improving their accuracy and effectiveness over time. ConclusionAI-based defect prediction and prevention are revolutionizing the field of software quality assurance. By leveraging AI algorithms, organizations can proactively identify potential defects, prioritize testing efforts, and prevent defects from arising in the first place. This shift from reactive to proactive defect management saves time, reduces costs, and enhances software quality. As AI continues to evolve, its impact on defect prediction and prevention will only become more profound. Q-Pros is a leading test services provider, we offer software testing as one of our main services, as we understand its importance in today’s competitive market. If you would like to know more about us and our services, check out our list of offers. Find out more about us and request a testing service through our online request form....

Read More
Shift-Left Testing

In today's ever-growing software development, organizations prioritize delivering high-quality software rapidly. However, conventional testing practices often encounter delays and increased costs, leading to compromised software quality. To address these challenges, the concept of "Shift-Left Testing" has emerged as a prominent approach. In this article, we will explore the essence of Shift-Left Testing, its various types, and the advantages it brings to organizations aiming to enhance their software development processes. Using high-quality software and tools, Q-Pros has proven excellence in defect prevention and software testing. In this article, we will explore the concept of Shift-Left Testing, an introduction to its different types, and the advantages this testing approach offers its users. Shift-Left Testing is an approach that involves moving testing activities and responsibilities earlier in the software development lifecycle. Traditionally, testing is conducted after the development phase is complete, leading to delayed bug detection and longer feedback loops. Shift-Left Testing aims to involve testers, quality assurance (QA) teams, and relevant stakeholders from the project's inception, allowing for early detection and prevention of defects. By focusing on collaboration, continuous feedback, and test automation, Shift-Left Testing aims to accelerate development cycles and improve software quality. Types of Shift-Left Testing Traditional Shift Left Testing: traditional shift left testing moves the focus of testing from acceptance and system-level testing towards unit and integration testing. This approach concentrates on testing individual components and their interactions, utilizing tools such as API testing. By catching defects earlier in the development process, this method helps reduce costs and improve overall quality. Incremental Shift Left Testing: Incremental shift left testing is commonly used in projects that follow a more iterative and incremental development approach. It involves breaking down the development cycle into smaller increments, with corresponding shorter durations. Testing activities from the larger waterfall V-model are shifted left to become increments in the smaller incremental V-models. This approach allows for continuous testing throughout the development process, including both developmental and operational testing. Agile/DevOps Shift Left Testing: Agile/DevOps shift left testing aligns with Agile and DevOps methodologies, emphasize frequent iterations and continuous delivery. Testing activities are organized into numerous short-duration sprints. The shift left occurs because the types of testing in the early sprints are positioned to the left of the corresponding types of testing in the larger V-models. This approach enables continuous testing throughout the development process, promoting early defect detection and faster feedback. Model-Based Shift Left Testing: Model-based shift left testing focuses on testing executable requirements, architecture, and design models. Instead of waiting for the software to be developed, testing begins almost immediately by validating these models. This approach allows for the early detection of defects in the requirements, architecture, and design stages, reducing the risk of implementing flawed software. As executable models and simulation/testing tools become more prevalent, model-based shift left testing is gaining popularity. Each of these shift-left testing methods offer advantages in terms of early defect detection and cost savings. They represent a progression, with each method building upon the previous one to improve the efficiency and effectiveness of testing. Benefits of Shift-Left Testing Early Bug Detection and Prevention: One of the key benefits of Shift-Left Testing is the early detection and prevention of defects. By involving testers and QA teams in the requirements gathering and design phases, potential issues can be identified and addressed early on. This reduces the chances of critical bugs making their way into the later stages of development, resulting in higher software quality. Improved Collaboration and Communication: Shift-Left Testing fosters collaboration between developers, testers, and stakeholders throughout the software development life cycle. Testers actively participate in discussions, provide valuable inputs, and work closely with developers to ensure quality standards are met. This improved collaboration leads to better communication, shared understanding, and a collaborative mindset that enhances the overall efficiency of the development process. Faster Feedback and Iterative Improvement: With shift-left Testing, feedback loops become shorter and more frequent. Testers can provide early feedback on requirements, designs, and prototypes, enabling developers to make necessary adjustments promptly. This iterative approach allows for continuous improvement, reduces rework, and ensures that the final product meets the desired quality standards. Increased Test Coverage and Efficiency: Shift-Left Testing emphasizes the early creation of test assets, including test cases, test scripts, and test data. By starting testing activities earlier, testers have more time to create comprehensive test suites that cover various aspects of the application. Test automation plays a crucial role in achieving increased test coverage and efficiency by automating repetitive tasks and enabling faster test execution. Cost and Time Savings: by catching defects early in the software development life cycle, Shift-Left Testing helps organizations save costs associated with fixing issues in later stages. Early defect detection reduces the time and effort required for bug fixing, resulting in shorter development cycles and faster time-to-market. Additionally, the increased efficiency and collaboration among team members contribute to overall cost savings. Continuous Quality Improvement: Shift-Left Testing promotes a culture of continuous improvement. Testers and QA teams continuously learn from their experiences, gather feedback, and refine their testing strategies. By incorporating lessons learned into subsequent iterations, organizations can continuously enhance their testing practices and deliver higher-quality software with each release. Shift-Left Testing is a powerful approach that transforms the way software development teams approach testing and quality assurance. By involving testers early in the software development life cycle, organizations can proactively address defects, improve collaboration, and optimize the overall development process. The benefits of Shift-Left Testing, including early bug detection, improved communication, faster feedback, and continuous improvement make it an essential practice for organizations aiming to accelerate development cycles and deliver high-quality software in today's fast-paced. Q-Pros is a leading test services provider, we offer software testing as one of our main services, as we understand its importance in today’s competitive market. If you would like to know more about us and our services, check out our list of offers. Find out more about us and request a testing service through our https://q-pros.com/online-test-request/...

Read More
Bugs in Software Testing

The objective of QA activities is to find and detect defects and ensure fulfillment of requirements as desired by stakeholders. We at Q-Pros put this on the top of our priorities when serving our clients. In this article, we will investigate bugs in software Testing, what are the criteria followed to report a bug, the terminology used, and why we get bugs? To start, let us look at the definition of bugs in a software system. Definition of “Bugs in Software Testing” A bug is a way to define a certain defect that is blocking an application to work as required. Finding bugs can be defined as the main objective of the entire testing process. Bugs might be caused due to several kinds of mistakes made by developers in the development phase. Types of Bugs in Software Testing Bugs are segregated into categories based on casualty as such: · Coding Error: A bug caused due to a mistake in the coding phase (Internal mistakes). · Design Error: A bug caused due to a designer’s mistake, these bugs could cause issues in functionality and behavior. · New suggestion: This type of bug is concerned with enhancement. A testing expert would suggest a change rather than a severe fix. · Documentation issue: Documentation issues could cause ambiguity and misunderstanding amongst involved developing teams. Which in turn results in bugs and defects. · Hardware problem: Bugs caused by hardware issues interfering with the application of the software. Types Of Bug Severity In order to prioritize QA efforts, we separate bugs in terms of severity. Bugs in Software Testing are defined based on effect level into the following types: · Blocker: Blocks a certain function or test to be actioned. · Critical: Causes system crash and major loss of data. · Major: Causes a huge abnormality of function. · Minor: Causes a small/minor loss of function. · Trivial: UI enhancements required. · Enhancement: A suggestion for a certain change or modification. - Using Jira as a bug-tracking tool Jira is an open-source tool that is used for bug tracking, project management, and issue tracking in manual testing. It offers services and features that include reporting, recording, and workflow. Jira is a prominent project management tool that is easy to use and works best for projects that require multiple teams and levels of involvement. Characteristics of a Valid Bug (Bug Criteria) Reporting defects can be trickier than you would think. For us to consider a bug valid for reporting, it must follow a certain criterion. First, a Bugs in Software Testing should be unique and have its own unique ID, this means that we cannot relate to more than one defect regardless of how close they are in the scope of application. Then you must consider the fact that bugs should be reproducible, meaning that more than one tester can get the same bug when following the same steps leading to that bug. Thirdly you should dedicate as much time as possible to make sure that the bug report is clear and cohesive and can be transferred from one team to another to get the issue fixed. - Read Also “Mobile App Testing Checklist for a Defect Free App” Where do Bugs come from? There are several reasons why we get bugs in Bugs in Software Testing. The top two factors of bugs immerging are: · Poor communication Communication during the development stages is highly significant and is a key factor in project management. Post-production bugs come about due to miscommunication which leads to ambiguity, meaning that there was an unclear or misunderstood transfer of information during the initial stages of requirement planning and design on what the software is required to do. · Programmer’s mistake Programmers might make mistakes during the coding phase, which will most certainly open the door to several bugs and defects. Testing experts have methods to check internally to root out the cause of a defect from the source code directly. Learn more about software testing approaches at Q-Pros and request a service via our online test request. https://q-pros.com/online-test-request/...

Read More

In this article, we will get to know more about a term commonly used in the QA (Quality Assurance) world. It is associated with automated means of testing a product. Codeless testing, or codeless automated testing, provides solutions for developers and testers by ensuring everybody’s involvement in the testing process regardless of their level of technical knowledge. So, what is Codeless testing? What are the specifics of implementing codeless automated tests? And how we at Q-Pros take advantage of such practices to ensure better and more guaranteed results for our clients. What is Codeless automated testing? Codeless automated testing is a type of testing that involves no writing of code. It allows teams to automate writing tests without the need for code-writing skills. By relieving the testers from the time-consuming code/scriptwriting process required in many manual code-based tests, Codeless Automation allows for more time within the Dev-Ops cycle, accelerates the software development lifecycle (SDLC), and channels more energy toward development and innovation for developers and testers alike. Codeless vs Code-based Testing By distinguishing testing approaches based on code usage/dependency, we produce terms such as low-code, no-code, and code-based testing. These terms are regarded as frameworks adopted by testing experts based on the business needs and requirements. Some products require simple forms of testing by following the logic of use. These approaches require little-to-no-code knowledge, while other more complex forms of testing rely extensively on script knowledge. Codeless Code-based Little to no coding skill Requires strong coding skills ~ Less than an hour a test ~ 5 to 6 hours per test Relies on self-handling tools Proactive in nature Tested on web and mobile Mobile native (Appium) & desktop web (Selenium) Test scenarios are flow-based Test scenarios are page-based When to use Codeless testing? To achieve top-quality results, any organization should ensure a healthy balance of code-based & codeless testing methods. Not all tests can be done via codeless means, some tests are too complex, and unpredictable, and it would be impossible to get accurate results without a hefty use of code. Certain tests for behavior for example are difficult to test for using codeless automation methods. An application being blocked on certain devices, or cases where different results are erupting irregularly. In the QA world, tests are segregated based on objective, and by understanding the required goal of the test, one can choose a testing method that is fitting for the mission at hand. Rather than scanning all aspects of an application using one code-based methodology, relying on codeless testing first-hand regarding certain aspects saves a lot of time. Components, features, and approach. Selenium is an open-source medium used for automated testing. It provided companies with a good ROI (Return on Investment) in their projects by accelerating the testing process. While companies relied on Selenium for automated testing, Selenium offered a component that allows the recording, editing, and debugging of functional tests, called Selenium IDE (Integrated development environment). Selenium IDE recorded testing steps and later provided the option to convert these testing steps into a programming language. Basic features for Selenium IDE: Allows test case reuse via the Run command. Provides automation cross-browser testing using the Selenium SIDE runner. Supports a mix of commanding options like loops and raise asserts. Runs a specific test or a testing suite. Records scripts, which can be later accessed manually for editing. Its benefits can be extended using plug-ins (Third-party services provided by Selenium). Another highly-ranked automation tool that offers a codeless feature is Katalon Studio. It is described as simple to use with unique features. Basic features for Katalon Studio: Very minimal coding skills are required. Built-in test case libraries, project templates, and keywords. It allows for recording and playback. Used for API, desktop, and mobile. Allows for the use of plug-ins. Many other tools that are unique in features are provided for test experts to make use of. Software development companies are adding and enhancing versions of their testing applications so that they can offer faster and easier ways of testing more efficiently. These innovative tools not only benefit testing experts or developers but also provide a sense of comfort for clients looking for better results. Codeless Automation using Cloud By utilizing cloud technology, we can speed up the testing process even more. Removing the supervising human user from the process and making sure that every aspect of an application is tested. Several benefits include: Adjusting workload as needed automatically. Automation on a cloud test for scalability easily without the need for hardware. Cloud automation testing can be accessed anywhere, anytime. Security is provided by the cloud provider. Cloud automation meets robust requirements. Q-pros is a leading Quality assurance company, with years of experience, we managed to stay ahead of the curve in all state-of-the-art testing utilities. You can request our automation testing services via our list of offers. By reducing limitations, Codeless testing strengthened the cooperation between the developing team, testing team, and clients/end-users. This enriches the Dev-Ops cycle and in return guarantees better results and cost-effectiveness. ...

Read More